

How much does ketosis cost and how can we minimize this impact?

Jessica A. A. McArt, DVM, PhD, DABVP (Dairy Practice)

Population Medicine & Diagnostic Sciences College of Veterinary Medicine Cornell University Ithaca NY 14853

Overview

- Herd-level impact of ketosis
- Herd-level disease monitoring
- Calculation of ketosis costs

• Ketosis prevention


Understanding herd-level impact of ketosis

Do we know which cows are ketotic?

- If we don't look for hyperketonemic cows, we don't know they are there.
- We know hyperketonemic cows:
 - Produce less milk
 - Have an increased risk of disease
 - Have poorer reproductive outcomes

= economic losses!

Does treatment fix this economic loss?

• Treating hyperketonemic cows reduces some milk loss and subsequent disease risk.

<u>But not all!</u>

- Reduce economic losses by:
 - 1. Monitoring herd-level prevalence
 - 2. Diagnosing and treating individual cows
 - 3. Adjusting management to reduce early lactation hyperketonemia

Applications of hyperketonemia testing

- Identifying individual hyperketonemic cows
 - Cow-side test for treatment decisions
- Identifying herds with hyperketonemia problems
 - Herd-level testing for management decisions

How many ketotic cows do herds have?

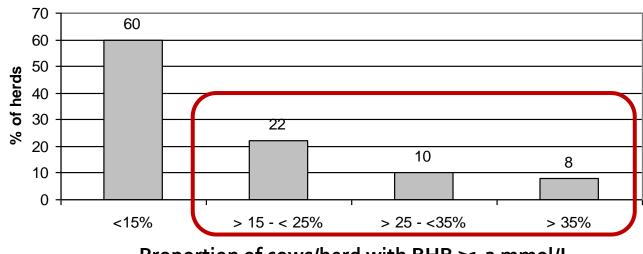
- Incidence:
 - Average ~ 45%
 - Range = 25 to 85%
- Prevalence:
 - Average ~ 20%
 - Range = 0-70%

What is the difference between incidence and prevalence??

Ospina et al., JDS, 2010; McArt et al., JDS, 2011; Chapinal et al., JDS, 2012; Surthar et al., JDS, 2013; Kerwin et al., JDS, 2022

Incidence

- Number of new cases of ketosis within a period of time / number of cows at risk
- Example:
 - 20 cows are measured for ketosis daily from 1-21 d in milk
 - 10 diagnosed as ketotic at some point between 1-21 d in milk
 - Incidence = 10/20 = 50%
- Requires repeatedly measuring the same cows
- Often only in research studies


Prevalence

- Number of cases of ketosis measured on a single day/ number of cows measured on that day
- Example:
 - 20 cows between 1-21 d in milk are measured for ketosis on 10/03/2023
 - 5 diagnosed as ketotic on 10/03/2023
 - Prevalence = 5/20 = 25%
- Most common method of herd-level monitoring
- For ketosis, prevalence is lower than incidence
- Multiply prevalence by 2 to 2.5 to estimate incidence

Hyperketonemia at the herd level

- Herds with ≥15 to 25% of sampled cows with elevated postpartum BHB
 - Increased postpartum disease
 - Poorer reproduction
 - Lower milk production

<u>40%</u> of herds above herd alarm level!

Postpartum BHB

Proportion of cows/herd with BHB ≥1.2 mmol/L

Ospina et al., JDS, 2010; Chapinal et al., JDS, 2012

How do we measure herd-level disease?

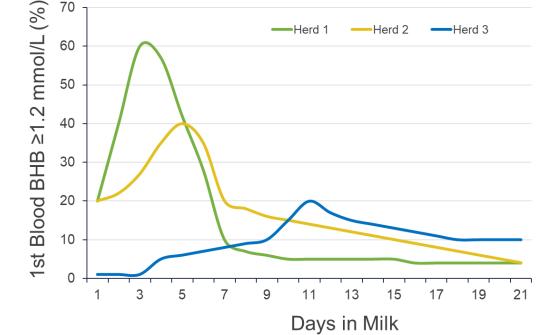
Herd-level hyperketonemia monitoring

- Goal: determine herd-level prevalence
 - Sample cows between 3 to 16 DIM
 - A larger sample size will result in a more precise estimate
- Which cows to sample?
 - All cows in DIM range are eligible
 - Most really sick cows will not be hyperketonemic
- Consistent sampling method
 - Cow selection
 - Measurement method
 - Time of day

What if I don't have enough cows to test?

1) <u>Monitor incidence</u>

- Test fresh cows 2 x per week
- Gives you a rolling herd-level incidence <u>and</u> you find all ketotic cows to treat
- Example:
 - Farm calves 4 cows per month
 - You test all cows 3-16 DIM on Mondays and Thursdays
 - Monthly incidence = # ketotic cows/4 cows that calved that month
 - Rolling year incidence = # ketotic cows/all cows that calved in the previous 12 months


2) <u>Monitor prevalence</u>

- Once per week or month measure all cows in DIM range
- Add that information to previously collected data
- Gives you a rolling herd-level prevalence
- Example:
 - Farm calves 4 cows per month
 - You test all cows 3-16 DIM the first Monday of every month
 - Monthly prevalence = # ketotic cows/4 cows that calved that month
 - Rolling year prevalence = # ketotic cows/all cows that calved in the previous 12 months

Interpretation of herd-level BHB monitoring

- Goal ≤15% prevalence of cows with BHB ≥1.2 mmol/L
 - Treat hyperketonemic cows according to farm protocols
 - Consider blanket treatment if prevalence is ≥40%
- Monitor prevalence over time

- Prevalence estimates in smaller herds much more variable
- Blood or milk

Why is knowing the cost of ketosis important?

Ketosis cost: diagnosis & treatment

True cost of hyperketonemia

- How much does hyperketonemia cost?
 - Not just diagnosis and treatment costs!
 - Milk loss
 - Increased risk of other diseases
 - Several other hidden costs

Understanding cost helps frame economics of prevention

Two types of costs

- Component cost:
 - Consequences of the impact of hyperketonemia on milk production, treatment, and culling
 - Cost without consideration of other associated disease impacts
- Total cost:
 - Component cost
 - Cost of other diseases attributable to hyperketonemia

Component cost of disease = direct costs + indirect costs

<u>Direct costs</u>:
Diagnostics
Therapeutics
Discarded milk
Veterinary service
Labor
Death loss


Indirect costs:
Future milk production losses
Future culling losses
Repro losses

McArt et al., 2015, JDS

Component cost of hyperketonemia

		Cost per case LACT >1	Avg. cost per case
Direct Cost of Hyperketonemia			
Diagnostics	(\$1)	(\$1)	(\$1)
Therapeutics	(\$3)	(\$3)	(\$3)
Discarded milk	\$ 0	\$ 0	\$ 0
Veterinary service	\$ 0	\$ 0	\$ 0
Labor	(\$2)	(\$2)	(\$2)
Death loss	(\$36)	(\$29)	(\$31)

Component cost of hyperketonemia

McArt et al., 2015, JDS

Total cost of disease

= component cost + attributable costs

- Attributable diseases: DA and metritis
 - Calculated using same method as for hyperketonemia
 - Direct costs and indirect costs
- 88% of DA cases attributable to hyperketonemia
- 70% of metritis cases attributable to hyperketonemia

Total cost of hyperketonemia

	Cost per case LACT = 1	Cost per case LACT >1	Avg. cost per case
Component Cost of Hyperketonemia			
Direct Cost of Hyperketonemia	(\$43)	(\$36)	(\$38)
Indirect Cost of Hyperketonemia	(\$90)	(\$75)	(\$79)
Total	(\$134)	(\$111)	(\$117)

Economic impact of hyperketonemia

- Different calculations for cost of hyperketonemia
 - McArt et al., JDS, 2015: Us\$289 per case (€255)
 - Raboisson et al., PVM, 2015: €257 (range = €72 €442)
- Emphasizes impact of management and prevention
- Per 100 calvings in a herd with a 20% prevalence:
 - 40% of fresh cows are hyperketonemic
 100 x 0.40 x €255 ~ €10,200
 - Decrease prevalence from 20% to 10%: ~ €5,100

How do we prevent or reduce hyperketonemia incidence?

Dry cow prevention – nutrition

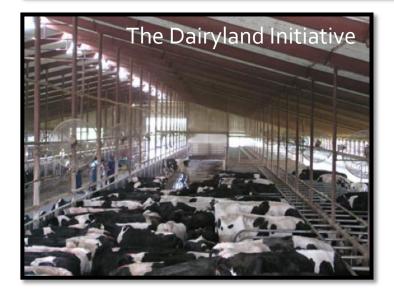
- Access to water
- Controlled energy diet
- Monensin
 - Controlled release capsule, given 3 wk prior to calving, 335 mg per d for 95 d
 - Meta-analyses show reduced BHB concentration, increased milk yield
- Rumen-protected choline

Dry cow prevention – social factors

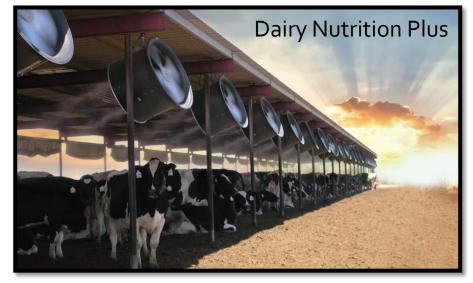
- Limit pen moves
- Stocking density:
 - Reduced stocking density helps during regrouping
 - Decreases feed bunk displacements
 - Increases lying time
 - Not a big difference between 80% and 100% prepartum

Talebi et al., JDS, 2014; Silva et al., JDS, 2014; Lobeck-Luchterhand et al., JDS, 2015

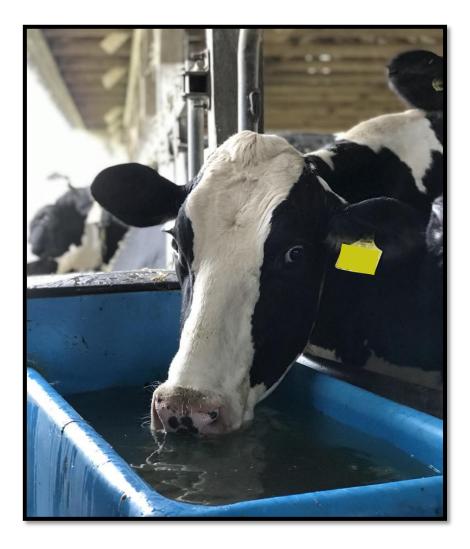
Dry cow prevention – heat abatement!


- Heat stress during late gestation:
 - Impaired mammary growth
 - Decreased milk production
- In utero exposure to heat stress:
 - Decreased weight gain (0.2 kg/d)
 - Less likely to enter milking herd (66% vs. 85%)
 - Produced less milk (5 kg/d)

Tao and Dahl, JDS, 2013; Monteiro et al., JDS, 2016; Laporta et al., JDS, 2017


Dry cow prevention – heat abatement

- Fans/air flow
- Soakers
- Fly control
- Shade



Fresh cow prevention – nutrition

- Access to water
- Access to fresh feed!
- High starch diet with good rumen health/fiber
- Monensin (largest time of impact)
- Other dietary supplements: rumenprotected choline, branched-chain amino acids

Fresh cow prevention – other factors

- Heifers separate from cows if possible
- Stocking density <85%
- Heat abatement
- Good health monitoring

Summary of prevention:

- Feed them right!
- Keep them comfortable.
 - Heat abatement
 - Decrease social stressors
- Monitor production and disease.

 Adjust nutrition and management to keep hyperketonemia prevalence <15%.

Is it worth it?

- Current management and resulting farm hyperketonemia incidence has a cost.
- Making no change:
 - choosing to maintain cost
- Adjusting management to reduce ketosis incidence:

 — choosing to reduce cost

Summary

- Excessive energy deficit is prevalent in early lactation cows.
- Hyperketonemia is an expensive disease that increases the risk for other expensive diseases.
- Routine monitoring is important.
- Prevention through appropriate transition period management and nutrition is key.

Acknowledgements

jmcart@cornell.edu blogs.cornell.edu/jessmcartlab © jmcartdvm

Caring For The Well-Being, Health, And Production Of Dairy Cattle

