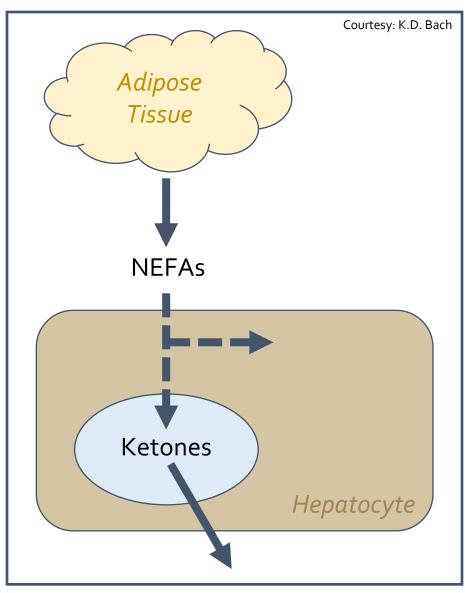


How do we best diagnose and treat cows with ketosis?

Jessica A. A. McArt, DVM, PhD, DABVP (Dairy Practice)

Population Medicine & Diagnostic Sciences College of Veterinary Medicine Cornell University Ithaca NY 14853

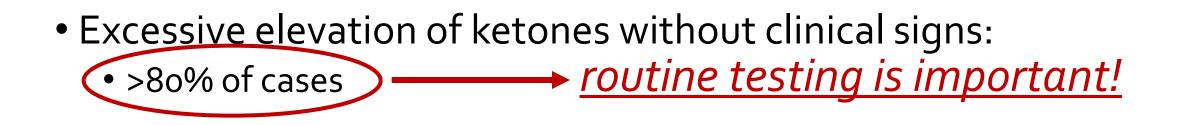


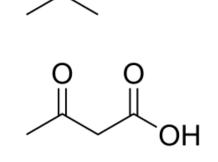
Overview

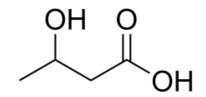
- Methods of ketosis diagnosis
- Daily variation of β -hydroxybutyrate
- Association with health and production
- When to focus testing
- Hyperketonemia treatment

Ketosis diagnosis

Normal adaptation to energy demands

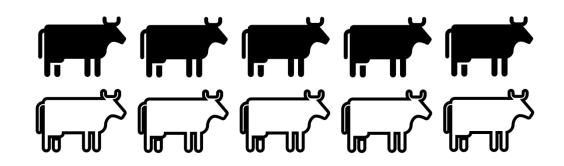



Energy-related metabolites:


- Non-esterified fatty acids (NEFA)
- Ketones
 - Acetone
 - Acetoacetate
 - β-hydroxybutyrate (BHB)

Ketosis monitoring

- Ketosis is the elevation of ketone bodies
- Clinical manifestation:
 - Decrease in appetite
 - Weight loss
 - Decrease in milk production


Historical ketosis diagnosis

Sweet smell of breath

- Acetone
- Other volatile compounds
- Not everyone can smell it!

This test for ketosis is only ~ 50% sensitive.

How should we test for ketones?

Three fluids can be sampled:

Urine ketone testing

- Dip strip
 - Test for acetoacetic acid
 - Decent accuracy
 - Compared to blood BHB ≥1.4 mmol/L (Oetzel, 2004, VCNA)
 - ≥ trace = 90% sensitivity, 80% specificity
 - ≥ small = 80% sensitivity, 95% specificity
 - ≥ moderate = 60% sensitivity, 99% specificity
- About 50% of cows can be induced to urinate
- Difficult with color blindness
- ~US\$0.25 per strip

Milk ketone testing – cow side

- Dip strip or powder
 - Test for milk BHB
 - Moderate to poor sensitivity, decent specificity
 - Some ketotic cows will test non-ketotic
 - Most non-ketotic cows will test non-ketotic
- Easy to get sample
- Often used not according to directions
 - Temperature of milk
 - Quantity of sample
- Range ~US\$0.60 to \$2.00 per test

Milk ketone testing – milk sampling

- Proportional milk samples
- Fourier-transform infrared spectroscopy
- Estimated milk constituents: milk BHB & acetone

Blood ketone testing

- Gold standard = laboratory blood BHB
 - Serum, EDTA plasma, heparinized plasma
 - Expensive, lag in time to result
- Handheld BHB meters
 - 1.5 µl of whole blood (or serum/plasma)
 - Excellent sensitivity and specificity
- Quantitative result
- ~US\$1.00 to \$3.00 per test

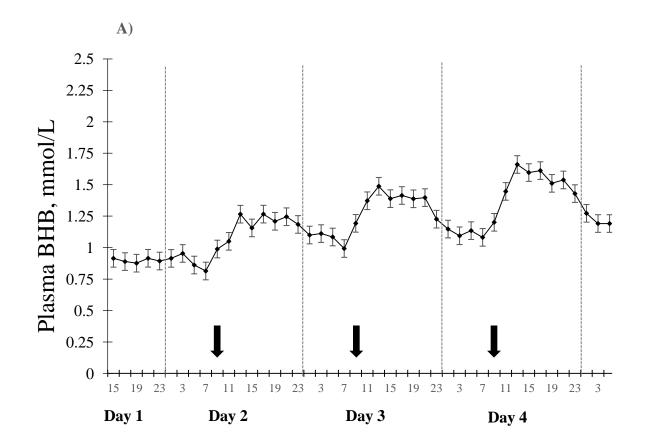
Blood ketone meters – how accurate are they?

	1.2 mmol/L		3.0 mmol/L	
Meter	Se (%)	Sp (%)	Se (%)	Sp (%)
Precision Xtra ^{1,2}	96.0%	97.0%	100.0%	91.6.0%
BHB Check ³	91.0%	93.0%	92.0%	100.0%
CentriVet ⁴	94.7	93.8	100.0	100.0
Nova Vet ²	94.9	91.8	100.0	100.0

- Good repeatability on all meters
- Some variation from gold standard (1 SD = +/- 0.3 mmol/L)

¹Iwersen et al., JDS, 2009; ²Bach et al., JDS, 2016; ³Sailer et al., JDS, 2018; ⁴Bach and McArt, personal communication, 2017

Hints for on-farm electronic meter use


- Treat your meter AND strips with respect!
- Read the manual
- Keep meters and strips warm
- Routinely calibrate and/or quality check

Additional info on blood testing:

- Commonly used thresholds:
 - Hyperketonemia ≥1.2 mmol/L
 - Severe hyperketonemia ≥3.0 mmol/L
- Location of sampling
 - Tail vessels = jugular vein
 - Milk vein ~ 0.3 mmol/L lower
 - Ear/vulva prick
- Time of sampling is important!!

Circadian pattern to blood BHB:

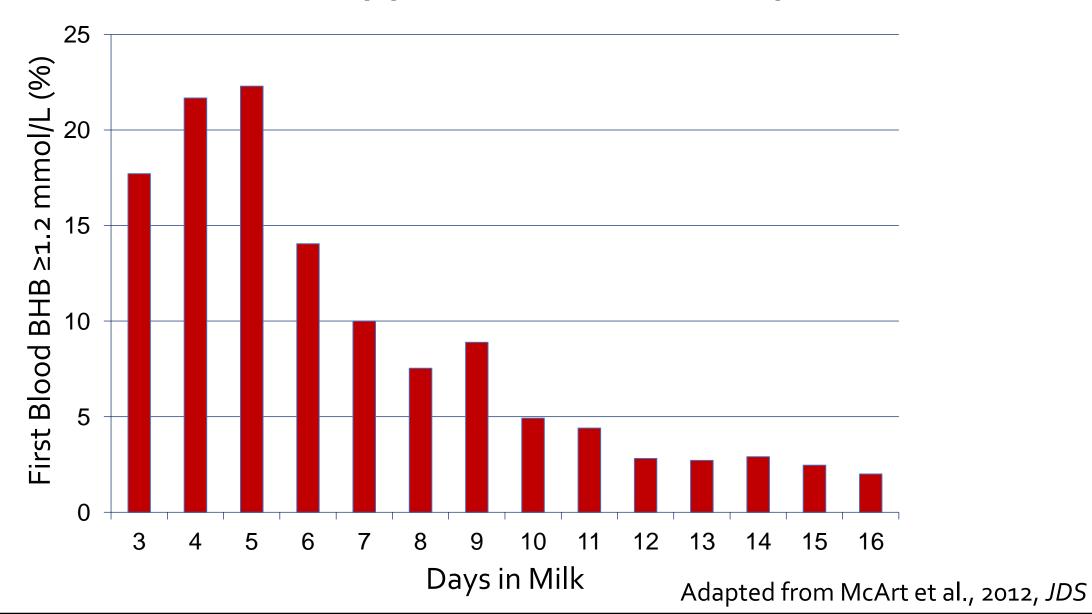
Plasma BHB for multiparous Holstein cows (n=28) between 3 and 14 DIM fitted with jugular catheters and sampled bihourly for 5 days. Dashed grey lines depict 24 h and arrows indicate time of feed delivery. Panel A) plasma BHB for all cows; Time *P* < 0.001. Panel B) plasma BHB by HYK group; Group *P* < 0.001, Time × Group *P* = 0.39.

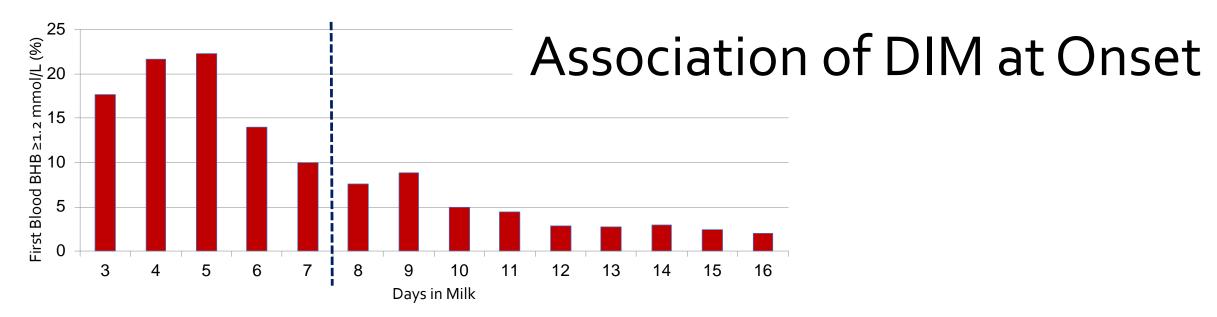
Courtesy of C. R. Seely

When to focus testing

Applications of hyperketonemia testing

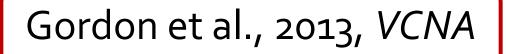
- Identifying individual hyperketonemic cows
 - Cow-side test for treatment decisions
- Identifying herds with hyperketonemia problems
 - Herd-level testing for management decisions


Individual animal consequences of hyperketonemia

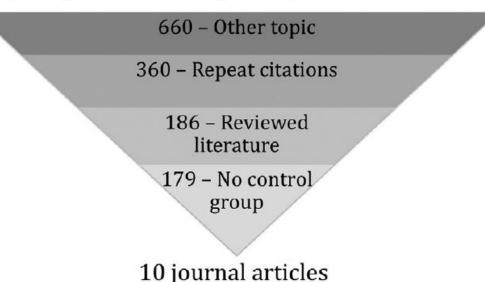

- Higher risk for adverse health events
 - Metritis (~3 times)
 - Displaced abomasum (~ 8 times)
 - Culling (~3.5 times)
- Decrease milk yield in early lactation
 - ~ 2 kg per cow per day
- Poorer reproduction
 - ~30% lower preg risk to 1st insemination

Duffield et al., 2009; Ospina et al., 2010; Chapinal et al., 2012; McArt et al., 2012

Incidence of hyperketonemia by DIM



- Risk of adverse health events different
 - Cows first hyperketonemic from 3 to 7 DIM >> 8 to 16 DIM
 - Cows first hyperketonemic from 8 to 16 DIM = non-ketotic cows
- Milk yield different
 - Cows first hyperketonemic from 3 to 7 DIM << 8 to 16 DIM
 - Cows first hyperketonemic from 8 to 16 DIM >> non-ketotic cows


McArt et al., JDS, 2012; Vanholder et al., JDS, 2015; Rodriguez et al. JDS, 2022

Treatment of hyperketonemia

Hyperketonemia treatment

1,395 journal articles, thesis, and abstracts

- Historical use of glucose no field trials assessing use alone
- Target underlying metabolic derangement

Hyperketonemia treatment

- Propylene glycol (PG)
 - 300 mL, orally once a day for 3 to 5 days
- + Vitamin B12
- 🔶 Glucose
 - 250 to 500 g with high BHB
 - Glucocorticoids
 - Lack of efficacy
 - May be detrimental to cows with high BHB

Propylene glycol

- 100% food grade liquid
 - No method to pellet into concentrate

- Current research into other gluconeogenic substances
 - Glucoboost®
 - No benefit with additional glycerol
- Two modes of action:
 - Increased supply of propionate = glucogenic
 - Reduced insulin sensitivity = decreased glucose demand by peripheral tissues

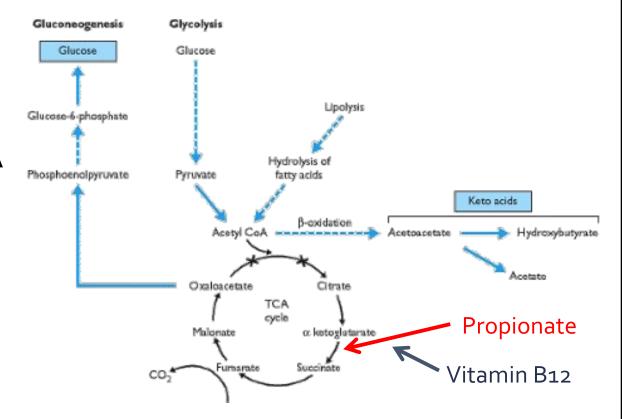
(Piantoni and Allen, JDS, 2015; Oliveria et al., JDS, 2019)

Propylene glycol

- Multi-herd study on 1,717 cows
 - Randomized to treatment
 - 300 mL oral PG to cows with BHB ≥1.2 mmol/L
- Speeds resolution of ketosis
- Increases early lactation milk yield (~1.5 kg/cow/d)
- Improves preg to 1st insemination (~30%)
- Fewer displaced abomasa (~40%)
- Fewer culled cows (~50%)

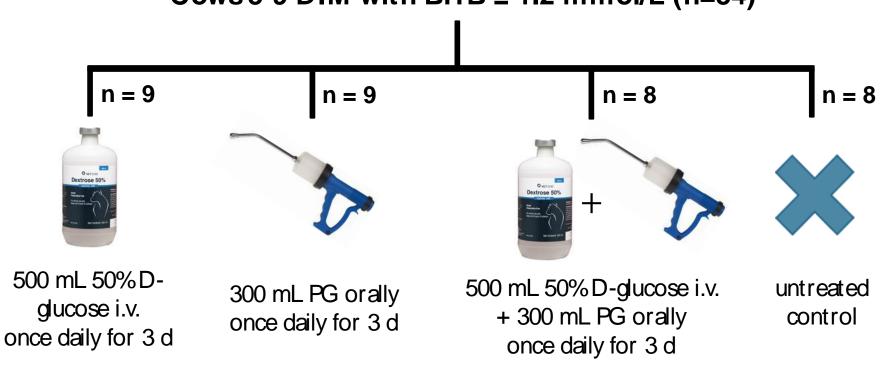
Propylene glycol

- Oral drenching preferred over mixing in feed
 - Drench larger effect on insulin than feeding in total mixed ration or top dressing
 - Absorbed more quickly when drenched than mixed in ration
- Low palatability
 - Top dressing ~500 g per d reduces feed intake after 1-2 d
 - Similar reduction when fed mixed in ration
 - Drench or mix with concentrates that change flavor (molasses)

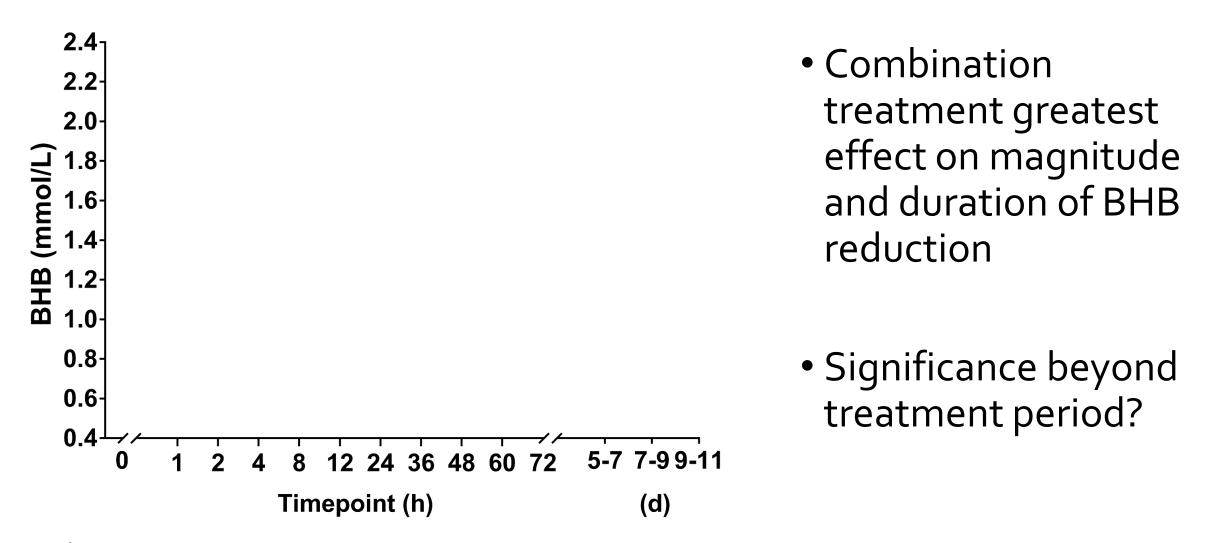


(Nielsen and Ingvartsen, Animal Feed Science and Technology, 2004)

Vitamin B12


- Synthesized in rumen
- Methylmalonyl-CoA mutase
 - Converts propionate to succinyl-CoA
 - Vitamin B12 dependent
- Some supporting evidence
 - 1 dose 25 mL Catosal
 - 0.05 mg B12/mL
 - 100 mg butaphosphan/mL

Glucose

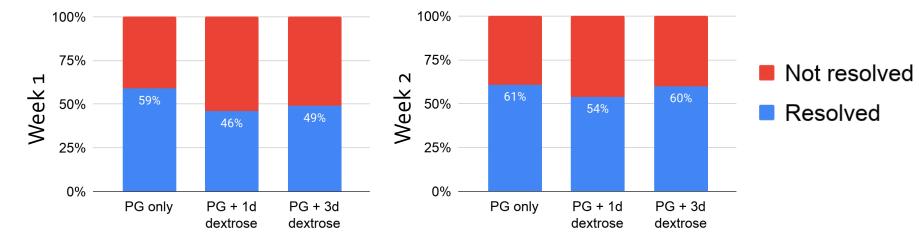

- Small, intensive trial on research herd
- Effects of propylene glycol (PG) and glucose on BHB

Cows 3-9 DIM with BHB \geq 1.2 mmol/L (n=34)

Mann et al., JDS, 2017

Glucose – results on BHB

Mann et al., JDS, 2017

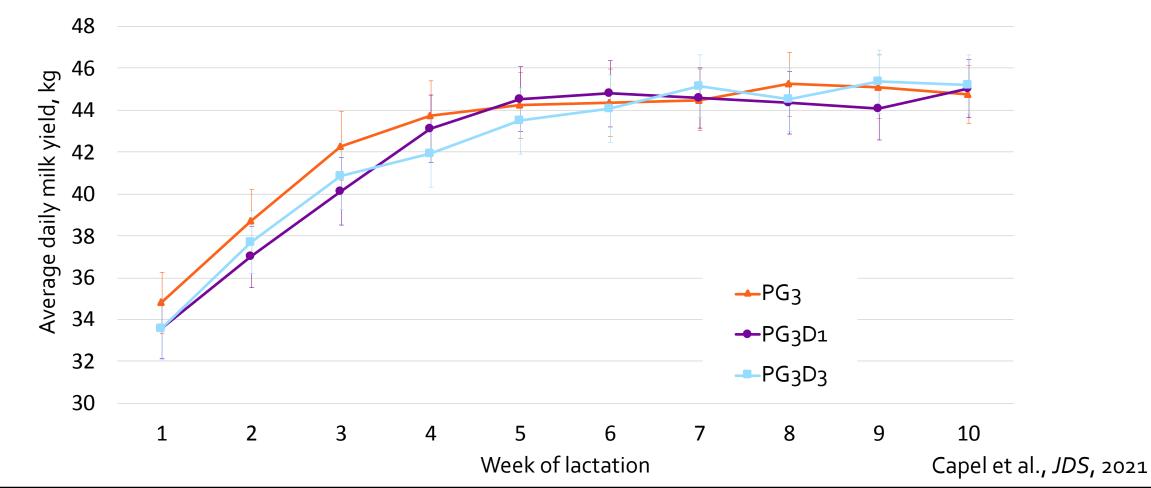

Glucose – field trial

- Large, multi-herd field trial
 - Screened 1,249 cows between 3 to 16 DIM
 - Hyperketonemia defined as blood BHB ≥1.2 mmol/L
 - n = 373 cows were hyperketonemic
- Randomized to treatment:
 - 300 mL oral PG once daily for 3 days (PG3)
 - 300 mL oral PG once daily for 3 days + 500 mL i.v. 50% glucose on <u>day 1</u> (PG3D1)
 - 300 mL oral PG once daily for 3 days + 500 mL i.v. 50% glucose on <u>day 1-3</u> (PG3D3)

Capel et al., JDS, 2021

Glucose – field trial results

- Resolution of hyperketonemia (BHB <1.2 mmol/L)
 - No difference between groups (P = 0.3)
 - ~50% resolution at 1 wk, ~60% resolution at 2 wk


Resolution (%) by week post-treatment:

- Risk of adverse events during first 60 DIM
 - No difference between groups (*P* = 0.6)
 - PG3 = 7.6%, PG3D1 = 8.0%, PG3D3 = 12.1%

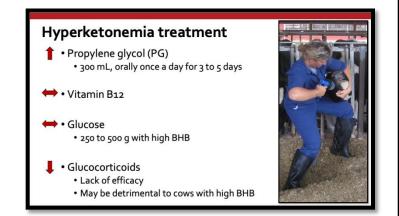
Capel et al., JDS, 2021

Average daily milk, first 10 weeks of lactation

- No difference between groups (*P* = 0.9)
- PG3 = 42.7 kg/d, PG3D1 = 42.4 kg/d, PG3D3 = 42.6 kg/d

Glucose – treatment summary

- Provide dairies with valid, labor efficient, and costeffective treatment strategies
- Glucose provides no additional benefit over treatment with oral PG alone
- Eliminating glucose allows for less invasive treatment with no negative impact on success
- Qualifier: only 10% of cows had BHB ≥3.0 mmol/L


"Based on the small and conditional benefits of dexamethasone and a lack of difference in milk yield or disease incidence, we do not recommend the use of dexamethasone to treat hyperketonemia."

Glucocorticoids

- Multi-farm field trial
- Hyperketonemic cows (BHB ≥1.2 mmol/L; n = 509):
 20 mg dexamethasone IM + 300 mL PG orally for 4 d
 - Equal volume saline IM + 300 mL PG orally for 4 d
- No difference in milk yield (P = 0.23)
- No difference in disease incidence (*P* = 0.98)
- Odds of resolution:
 - Increased for cows with BHB = 1.2 to 1.5 mmol/L
 - Decreased for cows with BHB >3.2 mmol/L

Hyperketonemia treatment protocol

- Owner, veterinarian, farm management team
- Understand what type of cow you are treating
 - Clinically ketotic
 - Hyperketonemic with no clinical signs
- Develop a treatment plan that is evidence based and will be followed
- Prevention is more important and cost effective than treatment!

Summary

- Use on-farm blood BHB measuring methods for individual cow diagnosis.
- Implement an evidence-based treatment plan.
- Perform routine prevalence testing and record over time.
- Adjust nutrition and management to keep hyperketonemia prevalence ≤15%.

Acknowledgements

jmcart@cornell.edu blogs.cornell.edu/jessmcartlab © y jmcartdvm

Caring For The Well-Being, Health, And Production Of Dairy Cattle

