Reproduction of dairy cows – how much depends on protein and AA intake?

Phil Cardoso DVM, MS, PhD

Associate Professor

- Wool \rightarrow arginine and sulfur amino acids (i.e., methionine)
- Lambs \rightarrow methionine, and lysine, histidine and arginine
- Feathers and eggs \rightarrow methionine and cysteine
- Meat
 - Swine and beef \rightarrow lysine
 - Broilers \rightarrow methionine and lysine
- Milk \rightarrow methionine and lysine

– Wool \rightarrow arginine and sulfur amino acids (i.e., methionine)

– Lambs \rightarrow methionine, and lysine, histidine and arginine

Impacts of supplemental arginine on the reproductive performance of fall lambing ewes A. R. Crane, R. R. Redden, M. L. Van Emon, T. L. Neville, L. P. Reynolds, J. S. Caton, C. S. Schauer

Journal of Animal Science, Volume 94, Issue 8, August 2016, Pages 3540–3549, https://doi.org/10.2527/jas.2016-0379 Published: 01 August 2016 Article history ▼

– Milk \rightarrow methionine and lysine

University of Illinois at Urbana-Champaign

and cysteine

– Wool \rightarrow arginine and sulfur amino acids (i.e., methionine)

– Lambs \rightarrow methionine, and lysine, histidine and arginine

Impacts of supplemental arginine on the reproductive performance of fall lambing ewes A. R. Crane, R. R. Redden, M. L. Van Emon, T. L. Neville, L. P. Reynolds, J. S. Caton, C. S. Schauer 🐱

Journal of Animal Science, Volume 94, Issue 8, August 2016, Pages 3540–3549, https://doi.org/10.2527/jas.2016-0379 Published: 01 August 2016 Article history ▼

– Milk \rightarrow methionine and lysine

University of Illinois at Urbana-Champaign

and cysteine

– Wool \rightarrow arginine and sulfur amino acids (i.e., methionine)

– Lambs \rightarrow methionine, and lysine, histidine and arginine

Impacts of supplemental arginine on the reproductive performance of fall lambing ewes A. R. Crane, R. R. Redden, M. L. Van Emon, T. L. Neville, L. P. Reynolds, J. S. Caton, C. S. Schauer 🐱

Journal of Animal Science, Volume 94, Issue 8, August 2016, Pages 3540–3549, https://doi.org/10.2527/jas.2016-0379 Published: 01 August 2016 Article history ▼

– Milk \rightarrow methionine and lysine

University of Illinois at Urbana-Champaign

and cysteine

So, What do we want from

this cow?

We should feed and manage dry and transition cows to:

- 1. Minimize health disorders
- 2. Maximize production
- 3. Maximize reproduction

Embryonic and fetal losses from conception to term in lactating dairy cows

University of Illinois at Urbana-Champaign

Hansen, Rev Bras Reprod Anim 2011

Embryonic and fetal losses from conception to term in lactating dairy cows

University of Illinois at Urbana-Champaign

Hansen, Rev Bras Reprod Anim 2011

The right diet

Let's be precise. I believe WE can do it!

https://www.youtube.com/watch?v=HyLoRyKvZvE

Relationship between milk yield and dietary **CP (%)** for lactating dairy cows

University of Illinois at Urbana-Champaign

Milk yield (kg/d)

Ipharraguerre and Clark, 2005

Ration Outputs AA Supp. Tool CNCPS Min & Vit Additives Amino Acids Met E & P P & E						
Units				Current	Desired	grams Req.
● % MP 🔵 grams 🔵 g/Mcal			MET	2.83	0.00	0
			LYS	7.56	0.00	0
Feed			MET			LYS
		lbs/day	\$/hd		lbs/day	\$/hd

AMT S

University of Illinois at Urbana-Champaign

Fehlberg et al., 2020

Ration Outputs AA Supp. Tool CNCPS Min & Vit Additives Amino Acids Met E & P P & E								
	Units					Current	Desired	grams Req.
🖲 % MP 🔾 gr	rams 🔿 g/Mcal				MET	2,83	0.00	0
					LYS	7.56	0.00	0
					MET			LYS
Feed		lbs/day	\$/hd		lbs/day	\$/hd		
Ration Outputs AA Supp. Tool CNCPS Min & Vit Additives Amino Acids Met E & P P & E								
	Ration Outputs	AA Sup	pp. Tool CI	NCPS Min 8	Vit Additiv	es Amino A	cids Met E	& P P & E
	Ration Outputs	AA Sup	pp. Tool CI	NCPS Min 8	Vit Additiv	es Amino A Current	cids Met E Desired	& P P & E grams Req.
) % MP () gra	Ration Outputs Units ams () g/Mcal	AA Sup	pp. Tool Cl	NCPS Min 8	Vit Additiv	es Amino A Current 33.38	Cids Met E Desired 0.00	& P P & E grams Req. 0
) % MP () gra	Ration Outputs Units ams () g/Mcal	AA Sup	pp. Tool CI	NCPS Min 8	Vit Additive MET LYS	es Amino A Current 33.38 89.28	Cids Met E Desired 0.00 0.00	& P P & E grams Req. 0
) % MP () gra	Ration Outputs Units ams () g/Mcal	AA Sup	pp. Tool CI	NCPS Min 8	Vit Additiv	es Amino A Current 33.38 89.28	Acids Met E Desired 0.00 0.00 0.00	& P P & E grams Req. 0
) % MP () gra	Ration Outputs Units ams () g/Mcal	AA Sup	pp. Tool CI	NCPS Min 8	Vit Additiv	es Amino A Current 33.38 89.28	Cids Met E Desired 0.00 0.00	& P P & E grams Req. 0 0
○ % MP	Ration Outputs Units ams () g/Mcal	AA Sup	pp. Tool CI	NCPS Min 8	Vit Additiv	es Amino A Current 33.38 89.28	Acids Met E Desired 0.00 0.00	& P P & E grams Req. 0 0 U
○ % MP	Ration Outputs Units ams () g/Mcal Feed	AA Sup	pp. Tool CI	NCPS Min 8	Vit Additive MET LYS MET \$/hd	es Amino A Current 33.38 89.28	Veids Met E Desired 0.00 0.00	& P P & E grams Req. 0 0 0 LYS \$/hd

AMT S

University of Illinois at Urbana-Champaign

Fehlberg et al., 2020

Ration Outputs AA	Supp. Tool C	NCPS Min 8	k Vit Additiv	es Amino A	Acids Met E	SAP P&E
Units				Current	Desired	grams Req.
● % MP 🔵 grams 🔵 g/Mcal			MET	2.83	0.00	0
			LYS	7.56	0.00	0
			MET			LYS
Feed		lbs/day	\$/hd		lbs/day	\$/hd
Ration Outputs AA	Supp. Tool	NCPS Min 8	Vit Additiv	es Amino A	Acids Met E	& P P & E
Units				Current	Desired	grams Req.
○ % MP			MET	33.38	0.00	0
			LYS	89.28	0.00	0
			MET			LYS
Feed		lbs/day	\$/hd		lbs/day	\$/hd
Ration Outputs AA	Supp. Tool	NCPS Min 8	Vit Additiv	es Amino A	cids Met E	& P P & E
Units				Current	Desired	grams Req.
○ % MP ○ grams			MET	1.18	0.00	0
			LYS	3.16	0.00	0
			MET		LYS	
Feed		lbs/day	\$/hd		lbs/day	\$/hd

AMT S

Methionine

Digestible Lys supply (g Lys/Mcal ME)

Lysine

Adapted from Van Amburgh, 2019

Effects of Precision Essential Amino Acid Formulation on a Metabolizable Energy Basis for Lactating Dairy Cows

- One hundred and forty-four (n = 144) Holstein cows [26 primiparous and 118 multiparous; 2.9 ± 1.4 lactations; <u>92 ± 24 DIM at enrollment</u>] were enrolled in a 114 day longitudinal study.
- Cattle were blocked into 16 cow pens (free stall) and balanced for parity, DIM, previous lactation performance, and current body weight.
- Each pen was fed TMR once daily at approximately 0600 h and pens were targeted for 5% refusal rate. All nine pens were fed the POS diet during a 14 day covariate period and randomly assigned to one of three diets described above for the remaining 100 d.

Effects of Precision Essential Amino Acid Formulation on a Metabolizable Energy Basis for Lactating Dairy Cows

- One hundred and forty-four (n = 144) Holstein cows [26 primiparous and 118 multiparous; 2.9 ± 1.4 lactations; <u>92 ± 24 DIM at enrollment</u>] were enrolled in a 114 day longitudinal study.
- Cattle were blocked into 16 cow pens (free stall) and balanced for parity, DIM, previous lactation performance, and current body weight.
- Each pen was fed TMR once daily at approximately 0600 h and pens were targeted for 5% refusal rate. All nine pens were fed the POS diet during a 14 day covariate period and randomly assigned to one of three diets described above for the remaining 100 d.

	-1 SD		+1 SD
ltem	Negative	Neutral	Positive
CP, % of DM	14.04	14.75	15.95
Soluble fiber, % of DM	6.01	5.55	5.05
ADF, % of DM	20.79	19.96	19.77
NDF, % of DM	32.39	31.03	31.39
uNDF240, % of NDF	25.5	29.09	28.73
Lignin, % of NDF	8.06	9.65	8.73
Starch, % of DM	29.82	29.31	29.30
Sugar. % of DM	3.95	4.06	3.9
Ether extract, % of DM	3.49	3.61	3.78
Ash, % of DM	6.60	6.92	6.57
Metabolizable Energy, Mcal/kg of DM	2.58	2.60	2.61
Methionine, g	71.44	78.30	92.67
Methionine, g AA/Mcal ME ¹	1.01	1.09	1.29
Lysine, g	201.70	222.12	250.07
Lysine, g AA/Mcal ME ¹	2.84	3.00	3.49
Histidine, g	62.78	70.42	83.81
Histidine, g AA/Mcal ME ¹	0.88	0.98	1.17

¹ formulated

Effects of Precision Essential Amino Acid Formulation on a Metabolizable Energy Basis for Lactating Dairy Cows

- One hundred and forty-four (n = 144) Holstein cows [26 primiparous and 118 multiparous; 2.9 ± 1.4 lactations; <u>92 ± 24 DIM at enrollment</u>] were enrolled in a 114 day longitudinal study.
- Cattle were blocked into 16 cow pens (free stall) and balanced for parity, DIM, previous lactation performance, and current body weight.
- Each pen was fed TMR once daily at approximately 0600 h and pens were targeted for 5% refusal rate. All nine pens were fed the POS diet during a 14 day covariate period and randomly assigned to one of three diets described above for the remaining 100 d.

	-1 SD		+1 SD
ltem	Negative	Neutral	Positive
CP, % of DM	14.04	14.75	15.95
Soluble fiber, % of DM	6.01	5.55	5.05
ADF, % of DM	20.79	19.96	19.77
NDF, % of DM	32.39	31.03	31.39
uNDF240, % of NDF	25.5	29.09	28.73
Lignin, % of NDF	8.06	9.65	8.73
Starch, % of DM	29.82	29.31	29.30
Sugar. % of DM	3.95	4.06	3.9
Ether extract, % of DM	3.49	3.61	3.78
Ash, % of DM	6.60	6.92	6.57
Metabolizable Energy, Mcal/kg of DM	2.58	2.60	2.61
Methionine, g	71.44	78.30	92.67
Methionine, g AA/Mcal ME ¹	1.01	1.09	1.29
Lysine, g	201.70	222.12	250.07
Lysine, g AA/Mcal ME ¹	2.84	3.00	3.49
Histidine, g	62.78	70.42	83.81
Histidine, g AA/Mcal ME ¹	0.88	0.98	1.17

¹ formulated

Cows fed <u>Neutral</u> produced similar levels of energy corrected milk and yield similar production of fat components when compared to cows fed the <u>Positive</u> treatment

Cows fed <u>Neutral</u> produced similar levels of energy corrected milk and yield similar production of fat components when compared to cows fed the <u>Positive</u> treatment

LaPierre et al., 2019

How about dry cows?

The right diet

Dietary Recommendations for Dry Cows

- NEL: Control energy intake at 18 to 20 Mcal daily [diet ~ 1.39 Mcal/kg (0.63 Mcal/lb) DM] for mature cows
- **Crude protein:** 12 14% of DM
- Metabolizable protein (MP): > 1,200 g/d
- Starch content: 12 to 15% of DM (NFC < 26%)
- NDF from forage: 40 to 50% of total DM or 4.5 to 6 kg per head daily (~0.7 0.8% of BW). Target the high end of the range if more higher-energy fiber sources (like grass hay or low-quality alfalfa) are used, and the low end of the range if straw is used (2-5 kg)
- Total ration DM content: <50% (add water if necessary)
- Minerals and vitamins: follow guidelines (For close-ups, target values are 0.40% magnesium (minimum), 0.35 0.40% sulfur, potassium as low as possible (Mg:K = 1:4), a DCAD of near zero or negative, calcium without anionic supplementation: 0.9 to 1.2% (~125g) calcium with full anion supplementation: 1.5 to 2.0% (~200g), 0.35 0.42% phosphorus, at least 1,500 IU of vitamin E, and 25,000 30,000 IU of Vitamin D (cholecalciferol)

Dietary Recommendations for Dry Cows

- NEL: Control energy intake at 18 to 20 Mcal daily [diet ~ 1.39 Mcal/kg (0.63 Mcal/lb) DM] for mature cows
- Crude protein: 12 14% of DM
- Metabolizable protein (MP): > 1,200 g/d
- Starch content: 12 to 15% of DM (NFC < 26%)
- NDF from forage: 40 to 50% of total DM or 4.5 to 6 kg per head daily (~0.7 0.8% of BW). Target the high end of the range if more higher-energy fiber sources (like grass hay or low-quality alfalfa) are used, and the low end of the range if straw is used (2-5 kg)
- Total ration DM content: <50% (add water if necessary)
- Minerals and vitamins: follow guidelines (For close-ups, target values are 0.40% magnesium (minimum), 0.35 0.40% sulfur, potassium as low as possible (Mg:K = 1:4), a DCAD of near zero or negative, calcium without anionic supplementation: 0.9 to 1.2% (~125g) calcium with full anion supplementation: 1.5 to 2.0% (~200g), 0.35 0.42% phosphorus, at least 1,500 IU of vitamin E, and 25,000 30,000 IU of Vitamin D (cholecalciferol)

No effect on subsequent Al

No effect on subsequent AI

Low milk production = 56 lb/d (25.4 kg/d) Moderate milk production = 83 lb/d (37.6 kg/d) High milk production = 113 lb/d (51.2 kg/d)

No effect on subsequent AI

Low milk production = 56 lb/d (25.4 kg/d) Moderate milk production = 83 lb/d (37.6 kg/d) High milk production = 113 lb/d (51.2 kg/d)

No effect on subsequent Al

Low milk production = 56 lb/d (25.4 kg/d) Moderate milk production = 83 lb/d (37.6 kg/d) High milk production = 113 lb/d (51.2 kg/d)

A total of 10,271 cows from 713 herds were selected

Protein (N) Utilization by the Ruminant

University of Illinois at Urbana-Champaign

J. Bryant and B. R. Moss, Montana State University

- NDF from forage: 40 to 50% of total DM or 4.5 to 6 kg per head daily (~0.7 0.8% of BW). Target the high end of the range if more higher-energy fiber sources (like grass hay or low-quality alfalfa) are used, and the low end of the range if straw is used (2-5 kg)
- Total ration DM content: <50% (add water if necessary)
- Minerals and vitamins: follow guidelines (For close-ups, target values are 0.40% magnesium (minimum), 0.35 0.40% sulfur, potassium as low as possible (Mg:K = 1:4), a DCAD of near zero or negative, calcium without anionic supplementation: 0.9 to 1.2% (~125g) calcium with full anion supplementation: 1.5 to 2.0% (~200g), 0.35 0.42% phosphorus, at least 1,500 IU of vitamin E, and 25,000 30,000 IU of Vitamin D (cholecalciferol)

Liver Functionality Index: LFI

Uses changes in plasma concentrations of several blood biomarkers (i.e., albumin, cholesterol, and bilirubin)

- Low LFI (LLFI) is indicative of a pronounced inflammatory response and less favorable circulating AA profile, which together suggest a more difficult transition from gestation to lactation
- High LFI (HLFI) is suggestive of a smooth transition

A tendency (P = 0.06) for a greater number of Met-supplemented cows in the HLFI was observed

University of Illinois at Urbana-Champaign

Trevisi et al., 2012; Zhou et al., 2017

A tendency for a greater (P = 0.06) number of Met-supplemented cows in the HLFI was observed

A tendency for a greater (P = 0.06) number of Met-supplemented cows in the HLFI was observed

High LFI

A tendency for a greater (P = 0.06) number of Met-supplemented cows in the HLFI was observed

A tendency for a greater (P = 0.06) number of Met-supplemented cows in the HLFI was observed

Uterine Cytology – Polymorphonuclear (PMN)

PMN in Uterus of Cows Fed rumen-protected methionine (MET) or not (CON)

Skenadore et al., 2017

Animal (2014), 8:s1, pp 54–63 © The Animal Consortium 2014 doi:10.1017/S1751731114000524

Reproductive tract inflammatory disease in *postpartum* dairy cows

S. J. LeBlanc[†]

Department of Population Medicine, University of Guelph, Guelph, ON, Canada N1G 2W1

(Received 23 October 2013; Accepted 10 February 2014; First published online 28 March 2014)

Schematic Representation of Concepts of the Patterns of Immune and Inflammatory Response in Dairy Cows in the Postpartum Period

University of Illinois at Urbana-Champaign

LeBlanc, 2014

Stella et al., 2018

Neutrophil Extracellular Traps (NET)

Stella et al., 2018

Increased number of lymphocytic foci was associated with the extent of uterine inflammation and fibrosis

- Cows with evidence of uterine infection postpartum had more foci in the pregnant uterus.
- A large number of small or intermediate foci in the histologic sections was associated with a smaller placenta and embryonic loss.

Feeding methionine improved uterine resilience mechanisms and capacity to prevent uterine diseases

↓ expression of transcripts involved in inflammatory
 processes are indicative that cows that are fed methionine
 throughout transition period are having a less inflammatory
 uterine environment after 15 days in milk.

↑ expression of transcripts involved in **cell metabolism** and **proliferation** processes.

Feeding methionine improved uterine resilience mechanisms and capacity to prevent uterine diseases

↓ expression of transcripts involved in **inflammatory processes** are indicative that cows that are fed methionine
 throughout transition period are having a less inflammatory
 uterine environment after 15 days in milk.

↑ expression of transcripts involved in **cell metabolism** and **proliferation** processes.

Effect of Methionine Supplementation from -21 to 72 Days relative to calving on Lipid Accumulation of Preimplantation Embryos

Embryos (n = 37) harvested 7 d after timed AI at 63 DIM from cows fed a control diet or the control diet enriched with rumen-protected methionine.

Fluorescence intensity of Nike Red staining

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI)

University of Illinois at Urbana-Champaign

Stella et al., unpublished

[TAG (54:3) + Na⁺] - m/z 907.7

[TAG (54:3) + Na⁺] - m/z 827.7

Embryo samples analyzed by (MALDI-MSI)

Units: intensity ion counts multiplied by 1,000

University of Illinois at Urbana-Champaign

Stella et al., unpublished

Effect of Maternal Methionine Supplementation on the Transcriptome of Bovine Preimplantation Embryos

University of Illinois at Urbana-Champaign

Table 3. Top 30 most significant genes that showed differential expression between control and methionine-rich treatment.

Effect on the Preim

ene	Name	log2 FC	FDR
APTM5	Lysosomal protein transmembrane 5	- 14.9	4.7×10 ⁻⁹
KG7	Natural killer cell group 7 sequence	- 13.6	4.4×10 ⁻⁸
М	Vimentin	- 13.8	1.8×10 ⁻⁷
YROBP	TYRO protein tyrosine kinase binding protein	-13.2	3.2×10 ⁻⁶
16	Interferon, alpha-inducible protein 6	- 12.6	1.5×10 ⁻⁵
UFF.2147.1	Novel transcript unit	-8.2	1.5×10 ⁻⁵
DC505451	Olfactory receptor, family 1, subfamily J, member 2-like	- 13.0	1.5×10 ⁻⁵
AMF7	Signaling lymphocyte-activating molecule family 7 family member 7	- 10.4	3.5×10 ⁻⁵
DC788199	Olfactory receptor 6C74-like	- 10.4	7.6×10 ⁻⁵
CP 1	Lymphocyte cytosolic protein 1 (L-plastin)	-9.9	1.1×10 ⁻⁴
DC100849660	Uncharacterized	11.9	2.2×10 ⁻⁴
A-DQB	MHC class II antigen	-11.1	2.2×10 ⁻⁴
HC2	SHC (Src homology 2 domain containing) transforming protein 2	-11.5	3.4×10 ⁻⁴
T5C3	5'-nucleotidase, cytosolic III	-11.5	3.5×10 ⁻⁴
DC510193	Apolipoprotein L, 3-like	7.8	4.3×10 ⁻⁴
DC100848815	SLA class II histocompatibility antigen, DQ haplotype D alpha chain-like	-11.4	4.3×10 ⁻⁴
UFF.606.1	Novel transcript unit	-5.6	4.3×10 ⁻⁴
DC100850656	Uncharacterized	-11.2	4.8×10 ⁻⁴
C11A1	Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1	- 10.7	6.9×10 ⁻⁴
DC100852347	Beta-defensin 10-like	-11.2	7.3×10 ⁻⁴
DC100297676	C-type lectin domain family 2 member G-like	-6.8	9.2×10 ⁻⁴
CL2A1	BCL2-related protein A1	-7.1	1.2×10 ⁻³
ISR	Insulin receptor	-5.1	1.3×10 ⁻³
OVA1	Neuro-oncological ventral antigen 1	- 10.6	1.5×10 ⁻³
3X15	T-box 15	-11.2	2.2×10 ⁻³
MEM200C	Transmembrane protein 200C	-6.6	2.2×10 ⁻³
PNMB	Glycoprotein (transmembrane) nmb	-7.5	2.3×10 ⁻³
RHGAP9	Rho GTPase activating protein 9	-5.7	2.7×10 ⁻³
F4E1B	Eukaryotic translation initiation factor 4E family member 1B	-11.3	3.1×10 ⁻³
OC100295170	Protein BEX2-like	-9.3	3.5×10 ⁻³

mentation

University of A negative log2 Fold Change (FC) value means that the gene showed higher expression in control treatment while a positive value means that the gene showed higher expression in methionine-rich treatment. doi:10.1371/journal.pone.0072302.t003

 Table 3. Top 30 most significant genes that showed differential expression between control and methionine-rich treatment.

ETTECT	Gene	Name	log2 FC	FDR	mentation
	LAPTM5	Lysosomal protein transmembrane 5	- 14.9	4.7×10 ⁻⁹	
	NKG7	Natural killer cell group 7 sequence	-13.6	4.4×10 ⁻⁸	
on the	VIM	Vimentin	- 13.8	1.8×10 ⁻⁷	
	TYROBP	TYRO protein tyrosine kinase binding protein	-13.2	3.2×10 ⁻⁶	
	IFI6	Interferon, alpha-inducible protein 6	-12.6	1.5×10 ⁻⁵	
Proim	CUFF.2147.1	Novel transcript unit	-8.2	1.5×10 ⁻⁵	
	LOC505451	Olfactory receptor, family 1, subfamily J, member 2-like	- 13.0	1.5×10 ⁻⁵	
	SLAMF7	Signaling lymphocyte-activating molecule family 7 family member 7	-10.4	3.5×10 ⁻⁵	
	LOC788199	Olfactory receptor 6C74-like	-10.4	7.6×10 ⁻⁵	
	LCP1	Lymphocyte cytosolic protein 1 (L-plastin)	-9.9	1.1×10 ⁻⁴	
	LOC100849660	Uncharacterized	11.9	2.2×10 ⁻⁴	
DC100849660	Unchara	cterized		11.9	9 2.2×10 ⁻⁴
DC100849660	Unchara	cterized		11.9	2.2×10^{-4}
DC100849660 DC510193	<i>Unchara</i> Apolipo	<i>cterized</i> protein L, 3-like		11.9 7.8	2.2×10 ^{−4} 4.3×10 ^{−4}
DC100849660 DC510193	Unchara Apolipo	<i>cterized</i> protein L, 3-like		11.9 7.8	9 2.2×10 ^{−4} 4.3×10 ^{−4}
DC100849660 DC510193	Unchara Apolipo CUFF.606.1	cterized protein L, 3-like Novel transcript unit	-5.6	11.9 7.8 4.3×10 ^{−4}	9 2.2×10 ^{−4} 4.3×10 ^{−4}
)C100849660)C510193	Unchara Apolipo CUFF.606.1 LOC100850656	cterized protein L, 3-like Novel transcript unit Uncharacterized	-5.6 -11.2	11.9 7.8 4.3×10 ⁻⁴ 4.8×10 ⁻⁴	2.2×10 ⁻⁴ 4.3×10 ⁻⁴
C100849660 C510193	Unchara Apolipo CUFF.606.1 LOC100850656 SLC11A1	cterized protein L, 3-like Novel transcript unit Uncharacterized Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1	5.6 11.2 10.7	11.5 7.8 4.3×10 ⁻⁴ 4.8×10 ⁻⁴ 6.9×10 ⁻⁴	9 2.2×10 ^{−4} 4.3×10 ^{−4}
C100849660 C510193	Unchara Apolipo CUFF.606.1 LOC100850656 SLC11A1 LOC100852347	cterized protein L, 3-like Novel transcript unit Uncharacterized Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1 Beta-defensin 10-like	-5.6 -11.2 -10.7 -11.2	11.9 7.8 4.3×10 ⁻⁴ 4.8×10 ⁻⁴ 6.9×10 ⁻⁴ 7.3×10 ⁻⁴	 2.2×10⁻⁴ 4.3×10⁻⁴
2100849660 2510193	Unchara Apolipo CUFF.606.1 LOC100850656 SLC11A1 LOC100852347 LOC100297676	cterized protein L, 3-like Novel transcript unit Uncharacterized Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1 Beta-defensin 10-like C-type lectin domain family 2 member G-like	-5.6 -11.2 -10.7 -11.2 -6.8	11.9 7.8 4.3×10 ⁻⁴ 4.8×10 ⁻⁴ 6.9×10 ⁻⁴ 7.3×10 ⁻⁴ 9.2×10 ⁻⁴	2.2×10 ⁻⁴ 4.3×10 ⁻⁴
100849660 1510193	Unchara Apolipo CUFF.606.1 LOC100850656 SLC11A1 LOC100852347 LOC100297676 BCL2A1	cterized protein L, 3-like Novel transcript unit Uncharacterized Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1 Beta-defensin 10-like C-type lectin domain family 2 member G-like BCL2-related protein A1	-5.6 -11.2 -10.7 -11.2 -6.8 -7.1	11.5 7.8 4.3×10 ⁻⁴ 4.8×10 ⁻⁴ 6.9×10 ⁻⁴ 7.3×10 ⁻⁴ 9.2×10 ⁻⁴ 1.2×10 ⁻³	9 2.2×10 ⁻⁴ 4.3×10 ⁻⁴
100849660 510193	Unchara Apolipo CUFF.606.1 LOC100850656 SLC11A1 LOC100852347 LOC100297676 BCL2A1 INSR	cterized protein L, 3-like Novel transcript unit Uncharacterized Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1 Beta-defensin 10-like C-type lectin domain family 2 member G-like BCL2-related protein A1 Insulin receptor	-5.6 -11.2 -10.7 -11.2 -6.8 -7.1 -5.1	11.9 7.8 4.3×10 ⁻⁴ 4.8×10 ⁻⁴ 6.9×10 ⁻⁴ 7.3×10 ⁻⁴ 9.2×10 ⁻⁴ 1.2×10 ⁻³ 1.3×10 ⁻³	2.2×10 ⁻⁴ 4.3×10 ⁻⁴
C100849660 C510193	Unchara Apolipo CUFF.606.1 LOC100850656 SLC11A1 LOC100852347 LOC100297676 BCL2A1 INSR NOVA1	cterized protein L, 3-like Novel transcript unit Uncharacterized Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1 Beta-defensin 10-like C-type lectin domain family 2 member G-like BCL2-related protein A1 Insulin receptor Neuro-oncological ventral antigen 1	-5.6 -11.2 -10.7 -11.2 -6.8 -7.1 -5.1 -10.6	$ \begin{array}{c} 11.9 \\ 7.8 \\ 4.3 \times 10^{-4} \\ 4.8 \times 10^{-4} \\ 6.9 \times 10^{-4} \\ 7.3 \times 10^{-4} \\ 9.2 \times 10^{-4} \\ 1.2 \times 10^{-3} \\ 1.3 \times 10^{-3} \\ 1.5 \times 10^{-3} \end{array} $	9 2.2×10 ⁻⁴ 4.3×10 ⁻⁴
C100849660 C510193	Unchara Apolipo CUFF.606.1 LOC100850656 SLC11A1 LOC100852347 LOC100297676 BCL2A1 INSR NOVA1 TBX15	cterized protein L, 3-like Novel transcript unit Uncharacterized Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1 Beta-defensin 10-like C-type lectin domain family 2 member G-like BCL2-related protein A1 Insulin receptor Neuro-oncological ventral antigen 1 T-box 15	-5.6 -11.2 -10.7 -11.2 -6.8 -7.1 -5.1 -10.6 -11.2	$ \begin{array}{c} 11.9\\ 11.9\\ 11.9\\ 11.9\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0$	 2.2×10⁻⁴ 4.3×10⁻⁴
C100849660	Unchara Apolipo CUFF.606.1 LOC100850656 SLC11A1 LOC100852347 LOC100297676 BCL2A1 INSR NOVA1 TBX15 TMEM200C	cterized protein L, 3-like Novel transcript unit Uncharacterized Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1 Beta-defensin 10-like C-type lectin domain family 2 member G-like BCL2-related protein A1 Insulin receptor Neuro-oncological ventral antigen 1 T-box 15 Transmembrane protein 200C	-5.6 -11.2 -10.7 -11.2 -6.8 -7.1 -5.1 -10.6 -11.2 -6.6	$ \begin{array}{c} 111.9\\ 7.8\\ 14.3 \times 10^{-4}\\ 4.8 \times 10^{-4}\\ 6.9 \times 10^{-4}\\ 7.3 \times 10^{-4}\\ 9.2 \times 10^{-4}\\ 1.2 \times 10^{-3}\\ 1.3 \times 10^{-3}\\ 1.5 \times 10^{-3}\\ 2.2 \times 10^{-3}\\ 2.2 \times 10^{-3}\\ \end{array} $	9 2.2×10 ⁻⁴ 4.3×10 ⁻⁴
C100849660 C510193	Unchara Apolipo CUFF.606.1 LOC100850656 SLC11A1 LOC100852347 LOC100297676 BCL2A1 INSR NOVA1 TBX15 TMEM200C GPNMB	cterized protein L, 3-like Novel transcript unit Uncharacterized Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1 Beta-defensin 10-like C-type lectin domain family 2 member G-like BCL2-related protein A1 Insulin receptor Neuro-oncological ventral antigen 1 T-box 15 Transmembrane protein 200C Glycoprotein (transmembrane) nmb	-5.6 -11.2 -10.7 -11.2 -6.8 -7.1 -5.1 -10.6 -11.2 -6.6 -7.5	$ \begin{array}{c} 11.3\\ 7.8\\ 14.3 \times 10^{-4}\\ 4.8 \times 10^{-4}\\ 6.9 \times 10^{-4}\\ 7.3 \times 10^{-4}\\ 9.2 \times 10^{-4}\\ 1.2 \times 10^{-3}\\ 1.3 \times 10^{-3}\\ 1.5 \times 10^{-3}\\ 2.2 \times 10^{-3}\\ 2.2 \times 10^{-3}\\ 2.3 \times 10^{-3}\\ \end{array} $	9 2.2×10 ⁻⁴ 4.3×10 ⁻⁴
2100849660	Unchara Apolipo CUFF.606.1 LOC100850656 SLC11A1 LOC100852347 LOC100297676 BCL2A1 INSR NOVA1 TBX15 TMEM200C GPNMB ARHGAP9	cterized protein L, 3-like Novel transcript unit Uncharacterized Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1 Beta-defensin 10-like C-type lectin domain family 2 member G-like BCL2-related protein A1 Insulin receptor Neuro-oncological ventral antigen 1 T-box 15 Transmembrane protein 200C Glycoprotein (transmembrane) nmb Rho GTPase activating protein 9	-5.6 -11.2 -10.7 -11.2 -6.8 -7.1 -5.1 -10.6 -11.2 -6.6 -7.5 -5.7	$\begin{array}{c} 111.9\\ \hline \\ 7.8\\ \hline \\ 4.3 \times 10^{-4}\\ 4.8 \times 10^{-4}\\ 6.9 \times 10^{-4}\\ \hline \\ 7.3 \times 10^{-4}\\ 9.2 \times 10^{-4}\\ 1.2 \times 10^{-3}\\ 1.3 \times 10^{-3}\\ 1.5 \times 10^{-3}\\ 2.2 \times 10^{-3}\\ 2.2 \times 10^{-3}\\ 2.3 \times 10^{-3}\\ 2.7 \times 10^{-3}\end{array}$	 2.2×10⁻⁴ 4.3×10⁻⁴
C100849660 C510193	Unchara Apolipor CUFF.606.1 LOC100850656 SLC11A1 LOC100852347 LOC100297676 BCL2A1 INSR NOVA1 TBX15 TMEM200C GPNMB ARHGAP9 EIF4E1B	cterized protein L, 3-like Novel transcript unit Uncharacterized Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1 Beta-defensin 10-like C-type lectin domain family 2 member G-like BCL2-related protein A1 Insulin receptor Neuro-oncological ventral antigen 1 T-box 15 Transmembrane protein 200C Glycoprotein (transmembrane) nmb Rho GTPase activating protein 9 Eukaryotic translation initiation factor 4E family member 18	-5.6 -11.2 -10.7 -11.2 -6.8 -7.1 -5.1 -10.6 -11.2 -6.6 -7.5 -5.7 -5.7 -11.3	$\begin{array}{c} 111.9\\ 7.8\\ 7.8\\ 4.3 \times 10^{-4}\\ 4.8 \times 10^{-4}\\ 6.9 \times 10^{-4}\\ 7.3 \times 10^{-4}\\ 9.2 \times 10^{-4}\\ 1.2 \times 10^{-3}\\ 1.3 \times 10^{-3}\\ 1.5 \times 10^{-3}\\ 2.2 \times 10^{-3}\\ 2.2 \times 10^{-3}\\ 2.3 \times 10^{-3}\\ 2.7 \times 10^{-3}\\ 3.1 \times 10^{-3}\\ \end{array}$	 2.2×10⁻⁴ 4.3×10⁻⁴

doi:10.1371/journal.pone.0072302.t003

Apolipoproteins are involved in the transport and metabolism of lipids, including cholesterol, and allow the binding of lipids to organelles

Methionine influences lipid metabolism in the preimplantation embryo

University of Illinois at Urbana-Champaign

This is happening... Patients are seeking to genetically modify their embryos to improve their IQ

From Dr. Schatten University of Pittsburgh School of Medicine

Life Chances	High Risk	Uphill Battle	Keeping Up	Out Ahead	Yours to Lose	
Training Style	Slow, sim supervis	Very exp hands- ple, ed	Mastery learning, hands-on	ials, Gathers, i ce own inform College format	infers nation	
Career Potential		Assembler, food service, nurse's aide	Clerk, teller, police officer, machinist, sales	Manager, teacher, accountant	Attorney, chemist, executive	
Q	70	80 9	0 100 1	10 120	130	
Total population distribution	5	20	50	20	5	1
Out of labor force more than 1 month out of year (men)	22	19	15	14	10	
Unemployed more than 1 month out of year (men)	12	10	7	7	2	1
Divorced in 5 years	21	22	23	15	9	
Had illegitimate children (women)	32	17	8	4	2	
Lives in poverty	30	16	6	3	2	
Ever incarcerated (men)	7	7	3	1	0	
Chronic welfare						

From Dr. Schatten University of Pittsburgh School of Medicine

		Life Char	nces	High Risk	Uphill Battle		Keeping Up		Out Ahead	Yours to Lose			
		Trair Style	hing	Slow, sim supervis	Very har ple, ed	explic nds-on	Mastery learning, hands-on	rials, nce	Gathers, i own inform College format	nfers nation			
		Care Pote	er ntial		Assembler, food service, nurse's aide		Clerk, teller, police officer, machinist, sales		Manager, teacher, accountant	Attorney, chemist, executive			
		Q	_	70 Populat	80	90 	100 1	10	120	130	1		1
Divorced in 5 years	21			22			23				15	9	2
Had illegitimate children (women)	32			17			8				4	2	1
a share of t		Divor	ced in	21	22		23		15	9		100	
Ever incarcerated (men)	7			7			3				1	0	
	~	incar (men	cerated	7	7		3		1	0		From Dr. S University	Schatt of Pitts
	-	Chro	nic welfare								-	School of I	MEDICI

sburgh

Effects of rumen-protected methionine maternal supplementation on placenta

Trophoblast epithelium

University of Illinois at Urbana-Champaign

Effects of rumen-protected methionine maternal supplementation on placenta

University of Illinois at Urbana-Champaign

Effects of rumen-protected methionine maternal supplementation on placenta

Effects of rumen-protected methionine maternal supplementation on placenta and calf

Feeding rumen-protected lysine prepratum increases energy corrected milk and milk component yields in Holstein cows during early lactation

had greater energy-corrected milk, 3.5% fat corrected milk, and milk components.

TMR

Ingredient, % of DM	Prepartum	Postpartum
Corn silgae	31.06	39.38
Canola meal	1.45	5.36
Alfalfa hay	-	20.95
Wheat midds	4.10	-
Corn gluten feed	6.69	-
Soybean meal, 48% CP	2.19	-
Wheat straw	40.25	-
Ground corn	0.16	15.26
Rumen-protected methionine	0.12	0.09
Rumen-protected fat		1.93
Soybean meal expeller	5.74	6.66
Anionic salt	3.85	-
Urea 46%	0.23	0.30
Mg oxide		0.09
Mg sulfate	0.25	-
Dicalcium phosphate		0.33
Molasses	-	4.43
Ca carbonate	2.08	-
Vitamin and mineral prepartum	1.31	-
Vitamin and mineral postpartum	-	4.73

Chemical composition

Itom	Propartum	Postpartum
	Перанин	röstpartum
DM, %	43.43 ± 1.42	45.71 ± 1.64
CP, % of DM	14.22 ± 0.68	16.75 ± 1.06
ADF, % of DM	28.41 ± 2.80	20.94 ± 1.77
NDF, % of DM	44.82 ± 2.75	31.25 ± 3.29
Lignin, % of DM	4.44 ± 0.74	3.80 ± 0.49
Starch, % of DM	13.99 ± 1.69	24.39 ± 2.62
Ehter extract, % of DM	3.03 ± 0.21	4.95 ± 0.51
Ash, % of DM	10.34 ± 1.34	9.16 ± 0.74
NE _L , Mcal/kg of DM	1.44 ± 0.03	1.67 ± 0.05
Ca, % of DM	1.46 ± 0.35	1.12 ± 0.21
P, % of DM	0.37 ± 0.04	0.41 ± 0.04
Mg, % of DM	0.50 ± 0.07	0.38 ± 0.03
K, % of DM	1.12 ± 0.11	1.75 ± 0.17
Mn, ppm	91.9 ± 17.5	99.3 ± 13.7
Mo, ppm	1.20 ± 0.30	1.32 ± 0.30

TMR

Ingredient, % of DM	Prepartum	Postpartum
Corn silgae	31.06	39.38
Canola meal	1.45	5.36
Alfalfa hay	-	20.95
Wheat midds	4.10	-
Corn gluten feed	6.69	-
Soybean meal, 48% CP	2.19	-
Wheat straw	40.25	-
Ground corn	0.16	15.26
Rumen-protected methionine	0.12	0.09
Rumen-protected fat	-	1.93
Soybean meal expeller	5.74	6.66
Anionic salt	3.85	-
Urea 46%	0.23	0.30
Mg oxide	-	0.09
Mg sulfate	0.25	-
Dicalcium phosphate	-	0.33
Molasses	-	4.43
Ca carbonate	2.08	-
Vitamin and mineral prepartum	1.31	-
Vitamin and mineral postpartum	-	4.73

Chemical composition

-	
Prepartum	Postpartum
43.43 ± 1.42	45.71 ± 1.64
14.22 ± 0.68	16.75 ± 1.06
28.41 ± 2.80	20.94 ± 1.77
44.82 ± 2.75	31.25 ± 3.29
4.44 ± 0.74	3.80 ± 0.49
13.99 ± 1.69	24.39 ± 2.62
3.03 ± 0.21	4.95 ± 0.51
10.34 ± 1.34	9.16 ± 0.74
1.44 ± 0.03	1.67 ± 0.05
1.46 ± 0.35	1.12 ± 0.21
0.37 ± 0.04	0.41 ± 0.04
0.50 ± 0.07	0.38 ± 0.03
1.12 ± 0.11	1.75 ± 0.17
91.9 ± 17.5	99.3 ± 13.7
1.20 ± 0.30	1.32 ± 0.30
	Prepartum 43.43 ± 1.42 14.22 ± 0.68 28.41 ± 2.80 44.82 ± 2.75 4.44 ± 0.74 13.99 ± 1.69 3.03 ± 0.21 10.34 ± 1.34 1.46 ± 0.35 0.37 ± 0.04 0.50 ± 0.07 1.12 ± 0.11 91.9 ± 17.5 1.20 ± 0.30

Rumen-protected Lysine top-dressed 0.54% of DMI prepartum 0.40% of DMI postpartum

Amino acid supply

	Prep	artum ²	Postp	artum ³			
Composition of MP ¹	PRE-L	PRE-C	POST-L	POST-C			
Metabolizable protein, g/d	1190	1170	2220	2280			
Lys, % of MP	8.24	6.86	7.15	6.27			
Met, % of MP	2.94	2.98	2.55	2.54			
Lys:Met	2.80	2.30	2.80	2.46			
Lys, g/d	98	80	159	143			
Met, g/d	35	35	57	57			
Lys, g/Mcal	3.55	2.95	3.11	2.73			
Met, g/Mcal	1.27	1.19	1.11	1.11			
¹ Metabolizable protein and AA predicted by AMTS ² Formulated for a dry cow at 1527 lb BW and 28.6 lb/d ³ Formulated for a cow at 14 days in milk, 1612 lb BW, producing 86 lb/d of m Fehlberg et al.,							
RPL provided prepartum tended to increase DMI postpartum

University of Illinois at Urbana-Champaign

Fehlberg et al., 2020

RPL provided prepartum tended to increase DMI postpartum

University of Illinois at Urbana-Champaign

Fehlberg et al., 2020

RPL prepartum increased ECM, FCM, and milk composition yields postpartum

Fehlberg et al., 2020

Calves from cows fed rumen-protected LYS tended to consume more milk replacer (wk 1-6)

University of Illinois at Urbana-Champaign

Thomas et al., 2021

Guadagnin et al., 2022

University of Illinois at Urbana-Champaign

Guadagnin, unpublished

- Increased placental cell processes, such as cell proliferation and growth, are indicated by the upregulation of *FGF2*, *FGF2R*, *PGF*, and *IGF2R*, the latest being a major fetal growth factor.
- These processes require **energy** and, thus, are likely related to the upregulation of *GLUT3* and *PCK1*.
- The downregulation of *SOD1* could indicate a **better redox status**, due to less need of the superoxide dismutase enzyme.
- It is likely that increasing supply of lysine allows for a greater **utilization of other amino acids** as well, such as methionine, exemplified by the upregulation of *MAT2A*.

Guadagnin, unpublished

- Increased placental cell processes, such as cell proliferation and growth, are indicated by the upregulation of *FGF2*, *FGF2R*, *PGF*, and *IGF2R*, the latest being a major fetal growth factor.
- These processes require **energy** and, thus, are likely related to the upregulation of *GLUT3* and *PCK1*.
- The downregulation of *SOD1* could indicate a **better redox status**, due to less need of the superoxide dismutase enzyme.
- It is likely that increasing supply of lysine allows for a greater **utilization of other amino acids** as well, such as methionine, exemplified by the upregulation of *MAT2A*.

- Increased placental cell processes, such as cell proliferation and growth, are indicated by the upregulation of *FGF2*, *FGF2R*, *PGF*, and *IGF2R*, the latest being a major fetal growth factor.
- These processes require **energy** and, thus, are likely related to the upregulation of *GLUT3* and *PCK1*.
- The downregulation of SOD1 could indicate a **better redox status**, due to less need of the superoxide dismutase enzyme.
- It is likely that increasing supply of lysine allows for a greater **utilization of other amino acids** as well, such as methionine, exemplified by the upregulation of *MAT2A*.

- **Increased placental cell processes**, such as cell proliferation and growth, are indicated by the upregulation of *FGF2*, *FGF2R*, *PGF*, and *IGF2R*, the latest being a major fetal growth factor.
- These processes require **energy** and, thus, are likely related to the upregulation of *GLUT3* and *PCK1*.
- The downregulation of *SOD1* could indicate a **better redox status**, due to less need of the superoxide dismutase enzyme.
- It is likely that increasing supply of lysine allows for a greater **utilization of other amino acids** as well, such as methionine, exemplified by the upregulation of *MAT2A*.

Effect of Supplementation with Rumen-Protected Methionine (RPM) on Reproduction of Lactating Dairy Cows

Cows were fed a basal TMR (6.9% Lys of MP and 1.87% Met of MP) from 30 \pm 2 to 128 \pm 2 DIM and assigned to two treatments:

RPM: Basal TMR top dressed daily with RPM

CON: Basal diet top dressed daily with DDG

Effect of Supplementation with Rumen-Protected Methionine (RPM) on Reproduction of Lactating Dairy Cows

RPM cows were top dressed with 50 g (29 g DDG and 21 g of RPM) CON cows were top dressed with 50 g of DDG

Animals

University of Illinois at Urbana-Champaign

Pregnancy Losses (%) from 28 to 61 days after AI

University of Illinois at Urbana-Champaign

University of Illinois at Urbana-Champaign

Amniotic vesicle size	Ellipsoid Volume		
	Day 33	n	Volume (mm ³) ± SEM
	Primiparous		
	Control	31	610.6 ± 38.6
	RPM	36	$\textbf{596.0} \pm \textbf{36.9}$
	<i>P</i> -value		0.71
	Multiparous		
	Control	35	472.3 ± 28.6
	RPM	45	592.1 ± 46.0
	<i>P</i> -value		0.05
University of Illing	ois at Urbana-Champaign		

431 lactating cows.

Annual rolling herd milk average: 16,975 kg (55.65 kg/cow/day)

University of Illinois at Urbana-Champaign

		TDI	NIRAC	
Naab Code	Name	IPI	NIVIŞ	IVIII
011HO15874	Altaexquisite	3085	1131	12
011H015655	Altakevlow	3067	1115	13
011HO15619	Altaalanzo	3062	1035	12
200HO12222	Holysmokes	3054	970	12
200HO12266	Overdo	3054	1082	E
011HO15624	Altazemini	3033	1097	12
007HO15167	Gameday	3033	1055	10
007HO15839	Magnum	3010	1027	17
200HO12156	Earlybird	3009	979	6
014H015179	TRooper	3000	909	
011HO15566	Altalumify	2998	1078	1
200HO12171	Mookie	2996	942	1
011HO15365	Altawheelhous	2994	1002	1
011HO15801	Altacitrine	2992	961	1
007HO15085	Parfect	2990	800	1
200HO11862	Lambeau	2989	889	1
200HO12197	Fellowship	2988	993	1
011HO15467	Altamagnifique	2987	983	1
007HO15721	Harrisenna	2981	934	1
007HO15640	Moonraker	2974	879	1
014HO15223	Conway	2935	884	

University of Illinois at Urbana-Champaign

INAAD CODE INAME IPI INIV	15 1	Mi
011H015874 Altaexquisite 3085 11	131	1
011H015655 Altakevlow 3067 11	115	1
011H015619 Altaalanzo 3062 10	035	1
200HO12222 Holysmokes 3054	970	1
200HO12266 Overdo 3054 10	082	
011H015624 Altazemini 3033 10	097	1
007HO15167 Gameday 3033 10	055	1
007HO15839 Magnum 3010 10	027	1
200HO12156 Earlybird 3009	979	
014HO15179 TRooper 3000	909	
011HO15566 Altalumify 2998 1	078	1
200HO12171 Mookie 2996	942	1
011HO15365 Altawheelhous 2994 1	002	1
011HO15801 Altacitrine 2992	961	1
007HO15085 Parfect 2990	800	1
200HO11862 Lambeau 2989	889	1
200HO12197 Fellowship 2988	993	1
011HO15467 Altamagnifique 2987	983	1
007HO15721 Harrisenna 2981	934	1
007HO15640 Moonraker 2974	879	1
014HO15223 Conway 2935	884	

University of Illinois at Urbana-Champaign

PRESCRIPTION PREMIX

W7997 HOPE LAKE ROAD , LAKE MILLS WISCONSIN 53551 920-723-0386

WORKSHOP NDS v3 - K-Star Dairy - Dry Cows - Far Off - Dry Cow Dry matter: 53.5% - Moisture: 46.5%

New recipe Dry Cow			N° of
Ingredients	AF lb/d	DM lb/d	
K-Star Dry Cow Mix 040220	11.4407	10.4131	
Water	7.0000	0.0035	
corn KSTAR	1.5000	1.3154	
straw K STAR	9.0518	8.2000	
corn silage 2021 K STAR	29.0500	11.1000	
TOTAL	58.0424	31.0319	

University of Illinois at Urbana-Champaign

Over 1,800 samples

University of Illinois at Urbana-Champaign

U of I FARM

3.70

U of I FARM

3.70

3.70

Cows with <u>higher milk protein</u> concentration had <u>increased</u> conception at first service and pregnancy by week 6

A retrospective, single cohort study was conducted using data collected from 74 Australian dairy herds. These herds provided data for 126,277 cows; these cows had 359,892 calvings (and hence lactations) recorded.

University of Illinois at Urbana-Champaign

Morton et al., 2016

TAKE HOME MESSAGE

Remember:

1.1

Cow # 1311 on controlled energy diet, - DCAD and AA

Cow # 1311 on controlled energy diet, - DCAD and AA

Cow # 1311 on controlled energy diet, - DCAD and AA

Cow # 1311 on controlled energy diet, - DCAD and AA

Cow # 1311 on controlled energy diet, - DCAD and AA

Cow	Colostrum Weight, Ibs	Colostrum Brix, %	% Fat, %	Total Protein, %	Total Solids, %
1311	13.15	25.6	3.43	17	24.26

University of Illinois at Urbana-Champaign

Investment!

The right diet provides the nutrients necessary for the cow's milk production, health, and fertility. Nothing more... nothing less; a "prescription."

Focus on it!

Animal Sciences COLLEGE OF AGRICULTURAL, CONSUMER & ENVIRONMENTAL SCIENCES

THANKS!

www.dairyfocus.llinois.edu